Magnetic Properties of LnMnO₃ (Ln=Ho, Er, Tm, Yb, and Lu)

K. Yoshii and H. Abe*

Japan Atomic Energy Research Institute, Mikazuki, Hyogo 679-5148, Japan; and *National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

Received September 5, 2001; in revised form January 2, 2002; accepted January 18, 2002

Magnetic data are presented for $LnMnO_3$ (Ln = Ho, Er, Tm, Yb, and Lu) having the hexagonal crystal structure of $P6_3cm$. DC magnetization measurements show that magnetic order is not clearly observed for Ln = Ho-Yb, while an antiferromagnetic transition of the Mn^{3+} moments is found at ~90 K for LuMnO₃, where the Lu³⁺ ion has no 4*f* localized moment. This is ascribed to both the paramagnetism of Ln^{3+} and the suppression of magnetization in the Mn^{3+} sublattices arising from strong antiferromagnetic interactions between Mn^{3+} . Deviation from the Curie–Weiss law at low temperatures indicates the onset of antiferromagnetism. Some magnetization data of Ca-substituted compounds, $Ln_{0.5}Ca_{0.5}MnO_3$, which have the different crystal structure of orthorhombic *Pnma*, are also discussed briefly. © 2002 Elsevier Science (USA)

Key Words: manganese oxide; hexagonal structure; orthorhombic structure; antiferromagnetism.

INTRODUCTION

Rare earth manganites, LnMnO₃, have an orthorhombic perovskite structure (space group *Pnma*) for Ln = La - Dy(1-3). The structure changes to a hexagonal $P6_3cm$ structure for the heavier lanthanides of Ln = Ho-Lu as well as Ln = Y and Sc, containing two-dimensional triangular Mn-O lattices (4-10). A neutron diffraction study for Ln = Ho, Er, Tm, Lu, and Sc revealed that these compounds showed antiferromagnetic transitions of the Mn^{3+} moments with Néel temperatures (T_N) of ~70-130 K, below which a noncollinear 120° spin structure was observed (5). Recently, magnetization and neutron diffraction data were reported for Ln = Y ($T_N \sim 70$ K) and Sc ($T_N \sim 130$ K), where the Ln^{3+} ions have no localized moment (6,7). Only ScMnO3 exhibits weak ferromagnetic behavior below T_N and spin reorientation around 70 K (6,7). Magnetization measurements for Ln = Yb and Lu showed antiferromagnetic transitions at $T_N = 82$ and 86 K, respectively, where only the Yb^{3+} ion has a localized 4f

moment $(4f^{13})$ (8). For the other compounds, to the authors' knowledge no magnetization data have been reported, though thermodynamic properties such as heat capacity have been investigated for some of the systems (9,10). In this paper, magnetic data for Ln=Ho, Er, Tm, Y, and Lu, obtained mainly from DC magnetization measurements, are presented. Ca-substituted compounds $Ln_{0.5}Ca_{0.5}MnO_3$, where the nominal valence of the Mn ions is 3.5 +, were also prepared for comparison; their magnetic properties are briefly considered as well. Magnetic properties for such systems have been reported for Y_{0.5}Ca_{0.5}MnO₃ (11,12) and Y_{0.7}Ca_{0.3}MnO₃ (13), exhibiting charge order below 260 K and spin-glass behavior below 30 K, respectively.

EXPERIMENTAL PROCEDURES

The samples were prepared by a solid-state reaction in air as in the previous works (6,8-10). Stoichiometric mixtures of Ln_2O_3 (Ln = Ho, Er, Tm, Yb, and Lu) and Mn₂O₃ (3N–4N, Soekawa) were thoroughly ground, pressed into pellets and fired in air at 1300°C for 24 h. The firing was repeated two to three times with intermediate grindings. Each compound was prepared twice in a separate run and was confirmed to show reproducible structural and magnetic properties. Actual oxygen content y was found to be 3.02-3.04(2) for $LnMnO_{y}$, based on the titration method as adopted for some manganites (2, 11, 14–16). The slight excess of oxygen is qualitatively the same tendency as that reported for other LnMnO₃ compounds with larger Ln^{3+} ions such as EuMnO₃ (14). For convenience, the compounds will be denoted as $LnMnO_3$ hereafter. Their crystal structures were determined by powder X-ray diffraction (XRD) using $CuK\alpha$ radiation for $2\theta = 10^{\circ} - 120^{\circ}$ with an angle step of 0.04°. The XRD patterns were refined by the Rietveld method using the program RIETAN-2000 (17). Magnetic properties were measured using a SQUID magnetometer (Quantum Design MPMS) between 4.5 and 400 K. DC magnetizationtemperature (M-T) curves were measured in both fieldcooled (FC) and zero-field-cooled (ZFC) modes with the applied fields (H) of 1000 Oe. Though the measurements were also done at the low applied field of 20 Oe, the results were found to be essentially the same. Isothermal magnetization was measured at 4.5 K within the applied fields of \pm 50 000 Oe. AC susceptibilities were measured on heating the samples after zero-field cooling to 4.5 K in the same apparatus with the AC field of 4 Oe. The frequency of the AC field was changed between 0.8 and 800 Hz.

RESULTS AND DISCUSSION

Figure 1 shows the XRD patterns of HoMnO₃. The obtained lattice parameters are close to those reported previously (4,5). The $P6_3cm$ structure could be assigned also to all the other compounds. The *a*- and *c*-lengths were ~6.137–6.044 and ~11.411–11.371 Å, respectively, all of which were confirmed to be close to those in the previous works (4,5). It was found that both of the values decreased with increasing atomic number of *Ln*, which is in accord with the lanthanide contraction.

Figure 2a shows the M-T curves measured with H=1000 Oe for LuMnO₃. The Lu³⁺ ion (4f¹⁴) has no 4f localized moment. Both of the FC and ZFC curves resemble those in Ref. (8), which exhibit an antiferromagnetic transition at $T_{\rm N} \sim 90$ K. Inverse magnetization curves followed the Curie–Weiss (CW) law above $T_{\rm N}$, which provided an effective paramagnetic moment ($\mu_{\rm P}$) close to a spin-only Mn³⁺ moment (4.90 $\mu_{\rm B}$; S=2; 3d⁴) and a Weiss temperature (θ) of ~ -700 K. Considering that its absolute

FIG. 1. XRD patterns of HoMnO₃ (space group $P6_3cm$, $R_{WP} = 10.27\%$, $R_P = 7.44\%$, $R_e = 6.72\%$, $R_F = 1.79\%$). The lattice parameters are a = 6.1373(2) and c = 11.4112(3) Å. The cross markers and the upper solid line stand for the experimental and calculated patterns, respectively. The vertical markers represent the calculated Bragg angles. The lower solid line shows the difference between the experimental and calculated intensities. The fitting parameters such as atomic positions are essentially identical to those reported for other LnMnO₃ compounds (4, 6, 7).

FIG. 2. (a) FC and ZFC M-T curves for LuMnO₃ measured with H=1000 Oe. (b) FC M-T curves for HoMnO₃ and ErMnO₃ measured with H=1000 Oe. A ZFC curve is shown only for HoMnO₃. (c) FC M-T curves for HoMnO₃ measured with H=20 Oe. (d) FC M-T curves for TmMnO₃ and YbMnO₃ measured with H=1000 Oe.

value ($|\theta|$) is much higher than the highest measurement temperature of 400 K, magnetization measurements around 700 K would be necessary in the future. This temperature determined in Ref. (8) is $\theta = -887$ K. These large $|\theta|$ values mean the presence of strong antiferromagnetic coupling between Mn³⁺, as in YMnO₃ ($\theta = -312$ K (7) and -705 K (8)) and ScMnO₃ ($\theta = -943$ K (6), -663 K (7), and -975 K(8)). Despite the considerable deviations, it seems that the $|\theta|$ value tends to increase with decreasing ionic radius of Ln^{3+} . This is qualitatively consistent with an increase in magnetic interactions originating from the shortening of the *a*-length. The much lower $T_{\rm N}$ than $|\theta|$ is attributed to the geometrical frustration in the two-dimensional triangular Mn–O lattice (6).

Figure 2b shows the FC M-T curves for HoMnO₃ and ErMnO₃. It was found that their ZFC curves resembled the FC curves and exhibited slight deviation of magnetization (typically by a few percents) below T_N , as demonstrated for HoMnO₃. These curves provide Curie-Weiss-like profiles with no apparent magnetic transition around T_N determined by neutron diffraction, i.e., 76 K for Ln = Ho and 79 K for Ln = Er (5). This situation was true when the applied field was lowered down to 20 Oe for each compound, which is shown for HoMnO₃ in Fig. 2c. One explanation for this result is that these transitions are masked by the paramagnetism of Ho3+ (effective paramagnetic moment $\mu_{eff} = 10.6 \,\mu_B$ and Er^{3+} ($\mu_{eff} = 9.6 \,\mu_B$) (18). This paramagentism is plausibly enhanced by the suppression of magnetization in the Mn^{3+} sublattices due to strong antiferromagnetic interactions as is deduced from the magnetization data of LuMnO₃. Figure 2d shows the FC M-T curves for TmMnO₃ ($T_N = 86 \text{ K}$ (5)) and YbMnO₃ ($T_N = 82 \text{ K}(8)$) measured with H = 1000 Oe. Both of the curves have profiles similar to those in Fig. 2b, exhibiting monotonic increase in magnetization with decreasing temperature. Effective paramagnetic moments of free-ion Tm^{3+} and Yb^{3+} are $\mu_{\text{eff}} = 7.6$ and $4.5 \,\mu_{\text{B}}$ (18), which are smaller than those of Ho^{3+} and Er^{3+} . The presence of antiferromagnetic transitions is also ambiguous in this data. For the magnetization curves reported previously for YbMnO₃, a paramagnetic effect of Yb³⁺ was subtracted (8). In this work, no detailed analysis for these data including the subtraction of the paramagnetic contribution of Ln^{3+} has been carried out, considering that temperature dependence of the Ln^{3+} moments cannot be accurately determined from the present data alone. The curve for TmMnO₃ tends to be flattened around the lowest measurement temperature of 4.5 K, probably owing to the crystal-field effect (19).

Figure 3a shows the inverse magnetization plotted against temperature for HoMnO₃ and YbMnO₃. From the CW fit above T_N , μ_P , and θ were calculated to be 11.3 μ_B /unit formula and -25 K for Ln=Ho, and 6.6 μ_B / unit formula and -200 K for Ln=Yb. These μ_P values are very close to those estimated from the free-ion Ho³⁺ and Yb³⁺ and the spin-only Mn³⁺ moments, i.e., 11.7 and 6.7 μ_B /unit formula for Ln=Ho and Yb, respectively. The absolute values of $|\theta|$ are smaller than that for LuMnO₃ because these θ values reflect averaged interactions of those around Mn³⁺ and Ln^{3+} . Effective internal magnetic fields acting on Ln^{3+} are plausibly much weaker than those on

FIG. 3. (a) Inverse magnetization-temperature (1/M-T) curves for HoMnO₃ and YbMnO₃ obtained from Fig. 2. The Curie–Weiss fit is shown as Fit only for the HoMnO₃. The 1/M values for HoMnO₃ were multiplied by a factor of 4. (b) Temperature derivative of the inverse magnetization plotted against temperature for YbMnO₃. T_N represents the Néel temperature.

 Mn^{3+} . The $|\theta|$ values for HoMnO₃ and ErMnO₃ are considerably lower than both the reported Néel temperature $T_N = 76 \text{ K}$ and 79 K (5), and T_N determined from temperature derivative shown later, suggesting that the temperature dependence of magnetization is determined mainly by the paramagnetic Ho^{3+} and Er^{3+} moments. Each curve deviates from the CW law at low temperatures, which may be understood in terms of the onset of the magnetic order of Mn³⁺. The deviation is very slight for Ln = Ho and Er because of the large paramagnetic effect of Ln^{3+} , which is shown only for Ln = Ho in the figure. The downward deviation of the curves suggests that the magnetization is increased by spin-canting as found for $ScMnO_3$ (6,7), whose origin is assumed to be the Dzyaloshinsky-Moriya interaction (7). These qualitative characteristic features have been observed also for the other compounds. Temperature derivative of these data exhibited peak values at 76 and 88 K for *Ln* = Ho and Yb, respectively. This is shown in Fig. 3b only for the latter case. These temperatures could be defined as $T_{\rm N}$. The result from both the CW fit and the temperature derivative is shown in Table 1. Each T_N is well close to the literature value (5,8). Its monotonic increase with increasing atomic number of *Ln* means the enhancement of antiferromagnetic interactions between Mn^{3+} noted earlier. Paramagnetic moments per unit formula was almost the same (~ 95 -100%) as calculated from the free-ion Ln^{3+} and the spinonly Mn^{3+} moments. The $|\theta|$ value also increases with increasing atomic number of Ln. This trend could be understood in terms of the increase in magnetic

TABLE 1Néel temperatures (T_N) and Weiss temperatures (θ) for Allthe $LnMnO_3$ Compounds. Each compound is expressed in termsof lanthanide (Ln) ion

Ln	$T_{\rm N}({ m K})$	θ (K)
Но	76	-25
Er	80	-30
Tm	86	-60
Yb	88	-200
Lu	90	-700

contribution of Mn^{3+} , owing to the monotonic decrease in the paramagnetic effect of Ln^{3+} .

Figure 4a shows the real part of AC susceptibility for HoMnO₃ measured with an AC field of 4 Oe and 800 Hz. As in the magnetization curves, temperature dependence of the susceptibility is governed mainly by the paramagnetic Ho³⁺ moment. Experimental data for all the compounds provided curve shapes analogous to those of the DC magnetization shown in Fig. 2. The imaginary part of the susceptibility in Fig. 4b decreases below ~ 50 K, for which a possible explanation is the combined effect of the antiferromagnetic order of the Mn³⁺ moment and a tendency toward magnetic order of Ho³⁺. Isothermal magnetization at 4.5 K is plotted for TmMnO₃ in Fig. 5. No saturation magnetization with small remanance (corresponding to $1.6 \times 10^{-3} \mu_{\rm B}$ /formula unit) supports the existence of the antiferromagnetism. Electrical resistivity measurements below 300 K have not been successfully carried out because of very large resistance. Though the insulating behavior is observed also for LnMnO₃ with the

FIG. 4. (a) Real and (b) imaginary parts of AC susceptibilities for $HoMnO_3$ measured with AC field of 4 Oe and 800 Hz.

FIG. 5. Isothermal magnetization (M) at 4.5 K plotted against applied field (H) for TmMnO₃. The inset shows a low applied-field region.

larger lanthanide ions, the present poor conductivity could be attributed also to narrow band widths arising from the two-dimensionality of the Mn–O sheets.

Studies of substitution effects of the Ln^{3+} ions are currently in progress for the present compounds. As noted earlier, magnetic properties for such systems have been reported for Ca-substituted YMnO₃, Y_{0.5}Ca_{0.5}MnO₃ (11,12), and Y_{0.7}Ca_{0.3}MnO₃ (13). DC magnetization data are shown in Fig. 6a only for Er_{0.5}Ca_{0.5}MnO₃ and $Yb_0 {}_5Ca_0 {}_5MnO_3$ prepared by the same solid-state reaction noted in Section 2 using Ln₂O₃, Mn₂O₃, and CaCO₃, (3N-4N, Soekawa). The nominal valence of the Mn ion is 3.5 +in these compounds. It was found that the actual oxygen content (y) was ~2.96 for $Ln_{0.5}Ca_{0.5}MnO_{y}$. The XRD measurements showed that the structures were orthorhombic Pnma (GdFeO₃ type) as reported for Y_{0.5}Ca_{0.5}MnO₃ (20). The lattice parameters calculated are a = 5.4657(3), b = 7.4266(6),c = 5.2903(5),and a = 5.4705(5),b = 7.4063(6), c = 5.2730(5) Å for $Er_{0.5}Ca_{0.5}MnO_3$, and Yb_{0.5}Ca_{0.5}MnO₃, respectively. The curve profiles in the figure are comparably similar to those of ErMnO₃ and YbMnO₃ (Fig. 2), showing no apparent magnetic transition, whereas low-temperature magnetization is smaller than that of *Ln*MnO₃. Each ZFC curves had an analogous shape to that of the corresponding FC curve with slightly smaller magnetization (by less than $\sim 7\%$) below $\sim 70-$ 80 K than the FC magnetization. Figure 6b shows deviation from the CW law below $\sim 250 \text{ K}$ for Yb_{0.5-} $Ca_{0.5}MnO_{3.}$ It is noteworthy that this temperature is close to the charge-ordering temperatures reported for some orthomanganites containing small A-site ions such as $Ln_0 {}_5Ca_0 {}_5MnO_3$ (Ln = Y, Pr, and Sm) (11,21). Inflection of the curve around 100 K might correspond to the shortrange antiferromagnetism at 130-135 K proposed for $Y_{0.5}Ca_{0.5}MnO_3$ (11). A calculated Weiss temperature is -6 K, whose absolute value is much smaller than in YbMnO₃. This result suggests the contribution of a ferromagnetic double-exchange interaction generated by

FIG. 6. (a) FC M-T curves for $\text{Er}_{0.5}\text{Ca}_{0.5}\text{MnO}_3$ and $\text{Yb}_{0.5}\text{Ca}_{0.5}\text{MnO}_3$ measured with H=1000 Oe. Magnetization for $\text{Er}_{0.5}\text{Ca}_{0.5}\text{MnO}_3$ was multiplied by a factor of 0.5. (b) 1/M-T curve for $\text{Yb}_{0.5}\text{Ca}_{0.5}$ MnO₃ obtained from Fig. 6a. The experimental data and Curie–Weiss fit are labeled as Exp and Fit, respectively.

the coexistence of Mn^{3+} and Mn^{4+} . Analogous structural and magnetic properties have been obtained for all the other $Ln_{0.5}Ca_{0.5}MnO_3$. To reveal more detailed properties of the compounds shown here and their origins, further investigations such as the observation of electronic structures are under way for both $LnMnO_3$ and $Ln_{0.5}Ca_{0.5}MnO_3$.

REFERENCES

 M. N. Iliev, H.-G. Lee, V. N. Popov, M. V. Abrashev, A. Hamed, R. L. Meng, and C. W. Chu, *Phys. Rev. B* 56, 2488 (1997).

- Z. Jirák, J. Hejtmánek, K. Knížek, and R. Sonntag, J. Solid State Chem. 132, 98 (1997), doi:10.1006/jssc.1997.7414.
- T. Mori, K. Aoki, N. Kamegashira, T. Shishido, and T. Fukuda, Mater. Lett. 42, 387 (2000).
- H. L. Yakel, W. C. Koehler, E. F. Bertaut, and E. F. Forrat, *Acta Crystollogr.* 16, 957 (1963).
- W. C. Koehler, H. L. Yakel, E. O. Wollan, and J. W. Cable, *Phys. Lett.* 9, 93 (1964).
- M. Bieringer, and J. E. Greedan, J. Solid State Chem. 143, 132 (1999), doi:10.1006/jssc.1998.8127.
- A. Muñoz, J. A. Alonso, M. J. Martínez-Lope, M. T. Casáis, J. L. Martínez, and M. T. Fernández-Díaz, *Phys. Rev. B* 62, 9498 (2000).
- T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, and H. Takagi, *Phys. Rev. B* 64, 104,419 (2001).
- 9. H. Satoh, T. Shoji, J. Iwasaki, and N. Kamegashira, *Thermochim.* Acta 261, 47 (1995).
- H. Satoh, J. Iwasaki K. Kawase, and N. Kamegashira, J. Alloys Compds. 268, 42 (1998).
- A. Arulraj, R. Gundakaram, A. Biswas, N. Gayathri, A. K. Raychaudhuri, and C. N. R. Rao, J. Phys. Condens. Matter 10, 4447 (1998).
- A. Arulraj, P. N. Santhosh, R. S. Gopalan, A. Guha, A. K. Raychaudhuri, N. Kumar, and C. N. R. Rao, *J. Phys. Condens. Matter* 10, 8497 (1998).
- R. Mathieu, P. Nordblad, D. N. H. Nam, N. X. Phuc, and N. V. Khiem, *Phys. Rev. B* 63, 174405 (2001).
- I. O. Troyanchuk, N. V. Samsonenko, N. V. Kasper, H. Szymczak, and A. Nabialek, *Phys. Status Solidi*, A 160, 195 (1997).
- M. C. Sánchez, J. Blasco, J. García, J. Stankiewicz, J. M. De Teresa, and M. R. Ibarra, *J. Solid State Chem.* **138**, 226 (1998), doi:10.1006/ jssc.1998.7801.
- W.-H. Jung, J-H. Sohn, J.-H. Lee, J.-H. Sohn, M.-S. Park, and S.-H. Cho, J. Am. Ceram. Soc. 83, 797 (2000).
- 17. F. Izumi and T. Ikeda, Mater. Sci. Forum 321-324, 198 (2000).
- J. H. Van Vleck, "The Theory of Electric and Magnetic Susceptibilities." Oxford Univ. London, 1965.
- 19. E. D. Jones, Phys. Rev. 180, 455 (1969).
- D. Vega, G. Polla, A. G. Leyva, P. Konig, H. Lanza, A. Esteban, H. Aliaga, M. T. Causa, M. Tover, and B. Alascio, *J. Solid State Chem.* 156, 458 (2001), doi:10.1006/jssc.2000.9023.
- C. Martin, A. Maignan, M. Hervieu, and B. Raveau, *Phys. Rev. B* 60, 12191 (1999).